3.429 \(\int \coth (e+f x) \sqrt{a+a \sinh ^2(e+f x)} \, dx\)

Optimal. Leaf size=50 \[ \frac{\sqrt{a \cosh ^2(e+f x)}}{f}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \cosh ^2(e+f x)}}{\sqrt{a}}\right )}{f} \]

[Out]

-((Sqrt[a]*ArcTanh[Sqrt[a*Cosh[e + f*x]^2]/Sqrt[a]])/f) + Sqrt[a*Cosh[e + f*x]^2]/f

________________________________________________________________________________________

Rubi [A]  time = 0.0977005, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3176, 3205, 50, 63, 206} \[ \frac{\sqrt{a \cosh ^2(e+f x)}}{f}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \cosh ^2(e+f x)}}{\sqrt{a}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Coth[e + f*x]*Sqrt[a + a*Sinh[e + f*x]^2],x]

[Out]

-((Sqrt[a]*ArcTanh[Sqrt[a*Cosh[e + f*x]^2]/Sqrt[a]])/f) + Sqrt[a*Cosh[e + f*x]^2]/f

Rule 3176

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rule 3205

Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFact
ors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(b*ff^(n/2)*x^(n/2))^p)/(1 - ff*x
)^((m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2
]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \coth (e+f x) \sqrt{a+a \sinh ^2(e+f x)} \, dx &=\int \sqrt{a \cosh ^2(e+f x)} \coth (e+f x) \, dx\\ &=-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a x}}{1-x} \, dx,x,\cosh ^2(e+f x)\right )}{2 f}\\ &=\frac{\sqrt{a \cosh ^2(e+f x)}}{f}-\frac{a \operatorname{Subst}\left (\int \frac{1}{(1-x) \sqrt{a x}} \, dx,x,\cosh ^2(e+f x)\right )}{2 f}\\ &=\frac{\sqrt{a \cosh ^2(e+f x)}}{f}-\frac{\operatorname{Subst}\left (\int \frac{1}{1-\frac{x^2}{a}} \, dx,x,\sqrt{a \cosh ^2(e+f x)}\right )}{f}\\ &=-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \cosh ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{\sqrt{a \cosh ^2(e+f x)}}{f}\\ \end{align*}

Mathematica [A]  time = 0.0588644, size = 42, normalized size = 0.84 \[ \frac{\text{sech}(e+f x) \sqrt{a \cosh ^2(e+f x)} \left (\cosh (e+f x)+\log \left (\tanh \left (\frac{1}{2} (e+f x)\right )\right )\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Coth[e + f*x]*Sqrt[a + a*Sinh[e + f*x]^2],x]

[Out]

(Sqrt[a*Cosh[e + f*x]^2]*(Cosh[e + f*x] + Log[Tanh[(e + f*x)/2]])*Sech[e + f*x])/f

________________________________________________________________________________________

Maple [C]  time = 0.089, size = 42, normalized size = 0.8 \begin{align*}{\frac{1}{f}\mbox{{\tt ` int/indef0`}} \left ({\frac{a \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\sinh \left ( fx+e \right ) }{\frac{1}{\sqrt{a \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}}}},\sinh \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(f*x+e)*(a+a*sinh(f*x+e)^2)^(1/2),x)

[Out]

`int/indef0`(a*cosh(f*x+e)^2/sinh(f*x+e)/(a*cosh(f*x+e)^2)^(1/2),sinh(f*x+e))/f

________________________________________________________________________________________

Maxima [A]  time = 1.781, size = 92, normalized size = 1.84 \begin{align*} \frac{{\left (\sqrt{a} e^{\left (-2 \, f x - 2 \, e\right )} + \sqrt{a}\right )} e^{\left (f x + e\right )}}{2 \, f} - \frac{\sqrt{a} \log \left (e^{\left (-f x - e\right )} + 1\right )}{f} + \frac{\sqrt{a} \log \left (e^{\left (-f x - e\right )} - 1\right )}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)*(a+a*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

1/2*(sqrt(a)*e^(-2*f*x - 2*e) + sqrt(a))*e^(f*x + e)/f - sqrt(a)*log(e^(-f*x - e) + 1)/f + sqrt(a)*log(e^(-f*x
 - e) - 1)/f

________________________________________________________________________________________

Fricas [B]  time = 1.8532, size = 549, normalized size = 10.98 \begin{align*} \frac{{\left (2 \, \cosh \left (f x + e\right ) e^{\left (f x + e\right )} \sinh \left (f x + e\right ) + e^{\left (f x + e\right )} \sinh \left (f x + e\right )^{2} +{\left (\cosh \left (f x + e\right )^{2} + 1\right )} e^{\left (f x + e\right )} + 2 \,{\left (\cosh \left (f x + e\right ) e^{\left (f x + e\right )} + e^{\left (f x + e\right )} \sinh \left (f x + e\right )\right )} \log \left (\frac{\cosh \left (f x + e\right ) + \sinh \left (f x + e\right ) - 1}{\cosh \left (f x + e\right ) + \sinh \left (f x + e\right ) + 1}\right )\right )} \sqrt{a e^{\left (4 \, f x + 4 \, e\right )} + 2 \, a e^{\left (2 \, f x + 2 \, e\right )} + a} e^{\left (-f x - e\right )}}{2 \,{\left (f \cosh \left (f x + e\right ) e^{\left (2 \, f x + 2 \, e\right )} + f \cosh \left (f x + e\right ) +{\left (f e^{\left (2 \, f x + 2 \, e\right )} + f\right )} \sinh \left (f x + e\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)*(a+a*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

1/2*(2*cosh(f*x + e)*e^(f*x + e)*sinh(f*x + e) + e^(f*x + e)*sinh(f*x + e)^2 + (cosh(f*x + e)^2 + 1)*e^(f*x +
e) + 2*(cosh(f*x + e)*e^(f*x + e) + e^(f*x + e)*sinh(f*x + e))*log((cosh(f*x + e) + sinh(f*x + e) - 1)/(cosh(f
*x + e) + sinh(f*x + e) + 1)))*sqrt(a*e^(4*f*x + 4*e) + 2*a*e^(2*f*x + 2*e) + a)*e^(-f*x - e)/(f*cosh(f*x + e)
*e^(2*f*x + 2*e) + f*cosh(f*x + e) + (f*e^(2*f*x + 2*e) + f)*sinh(f*x + e))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\sinh ^{2}{\left (e + f x \right )} + 1\right )} \coth{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)*(a+a*sinh(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a*(sinh(e + f*x)**2 + 1))*coth(e + f*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.20647, size = 69, normalized size = 1.38 \begin{align*} \frac{\sqrt{a}{\left (e^{\left (f x + e\right )} + e^{\left (-f x - e\right )} - 2 \, \log \left (e^{\left (f x + e\right )} + 1\right ) + 2 \, \log \left ({\left | e^{\left (f x + e\right )} - 1 \right |}\right )\right )}}{2 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)*(a+a*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(a)*(e^(f*x + e) + e^(-f*x - e) - 2*log(e^(f*x + e) + 1) + 2*log(abs(e^(f*x + e) - 1)))/f